Non-deterministic Turning Machine

Definition of Computation:

- The computation of a non-deterministic Turing machine is a tree whose branches correspond to different possibilities for the machine. If some branch of the computation leads to the accept state, the machine accepts its input.

- The computation of a non-deterministic Turing machine is defined in the expected way:

\[(\{q_f, q_T\} \times \Gamma) \leftarrow q_f \times \Gamma \ : \delta \]

Overview

- Notation
- Algorithms
- Enumerators
- Non-determinism
Proof Continued

Equivalence

For nondeterministic TM N, make equivalent deterministic TM D.

Construction:
- Simulate all possible branches of N's nondeterminism.
- Accept if any one of the computation branches of N accepts.

What do we mean by equivalent?

- View nondeterminism as a bunch of choice points.
- For each transition, pick an alternative from $\delta(q, a) \subseteq P(\Sigma \times \Gamma \times \{L, R\})$.
- Thus simulate them all in parallel (breadth-first), rather than depth-first.
- Must simulate them all in parallel (breadth-first) to ensure they are equivalent.
- View nondeterminism as a bunch of choice points.

Let b be the maximum number of choices.
- Given a sequence, we can increment it base b to get the next set of choices.
- So a computational path is just a number in base b.
- We can interpret a sequence of choices using $\{1, 2, \ldots, b\}^*$.
- View nondeterminism as a bunch of choice points.

While

address tape (sequence of choice points we are currently trying)
- simulation tape used to simulate a branch of computation
- input tape (never altered)
- use 3 tapes:
 - Copy input tape to simulation tape
 - Run computation according to choices on address tape
 + Running computation from start to one step after what we previously did
 + If computation goes into an accept state, then accept
 - Otherwise, a choice point is invalid, or we finish the sequence
 - If computation gets into an accept state, then accept
 + Running computation from start to one step after what we previously did
 - Copy input tape to simulation tape

Copy input tape to simulation tape
- Run computation according to choices on address tape
- While
- Copy input tape to simulation tape
- Run computation according to choices on address tape
- Address tape (sequence of choice points we are currently trying)
- Simulation tape used to simulate a branch of computation
- Input tape (never altered)
Can we define a notion of halting for a nondeterministic TM?

- Definition: Halts (accepts or rejects) on every computation branch. Halts if all branches halt.
- If we halt by accepting on any path, we accept. If we halt by rejecting on all paths, we reject.
- Can we define a notion of halting for a nondeterministic TM?

Nondeterminism and Decidability

Corollary 3.18: A language is Turing-recognizable if and only if some nondeterministic TM recognizes it.
Overview

- Notation
- Algorithms
- Enumerators
- Nondeterminism

Equivalence for Deciders

Corollary 3.19: A language is Turing-decidable if a nondeterministic TM decides it.

Previous construction for recognizing a language:

Equivalence for Deciders
Can we enumerate all strings in Σ^*?

Can we enumerate all numbers, writing them out in base 2?

Can we enumerate all numbers, writing them out in base b?

Recursively Enumerable Languages

- Languages that can be recognized by an Enumerator are called recursively enumerable languages.

- Enumerator TMs enumerate the members of its language:
 - Don't worry about repetitions, or order.
 - Can output an infinite list of strings.
 - Can output strings to the printer.
 - Have a work tape and a printer.

Enumerators
We re basically running \(V \) in parallel on all inputs + So, \(A \) will print it out as often as necessary \(\forall m \) \(\forall n \) \(\forall i \) \(\forall j \) \(\forall k \)
• If \(\forall j \) accepts a particular \(w \), it will do it in say \(f \) steps.
 's computation accepts, print our \(s \)
 Run \(\forall j \) for \(f \) steps on input \(s \)
 For \(i = 1, 1, 2, \ldots \), say \(\forall j \),
 's output is \(A \)
'\(A \) is Turing enumerable
• Construct \(E \) as follows:

We can make a list of them as \(A \) is enumerable
- Say \(\forall j \), \(\forall w \), is a list of all possible strings in \(A \)
- We have a deterministic TM \(A \) that recognizes \(L \)

Proof (Turing-recognizable language can be enumerated)

\[\text{Equivalence} \]

Equivalence

\[\text{Theorem 3.21:} \ \text{A language is Turing-recognizable iff it some} \]

\[\text{Continued} \]

\[\text{Continued} \]

\[\text{Continued} \]
Overview

Nondeterminism

Algorithms

Enumerators

Nondeterminism

Variants

• Pretty well any model with unrestricted access to unlimited memory has the same power

- Turing-recognizable and Turing-decidable
- So, many variants, but all still same class of languages
 - One reasonable requirement is only perform a finite amount of work in a single step
 - Any two computational models that satisfy certain reasonable requirements can simulate one another and hence are equivalent
 - Build an interpreter in one language for another one
 - Compile one language into another
 - Similar to how you can
 - Pretty well any model with unrestricted access to unlimited
Church-Turing Thesis

Church-Turing Thesis

- Intuitive notion of algorithm is the same as what can be done with a Turing machine or with lambda calculus.

- Hilbert's tenth problem was to devise an algorithm that tests whether a polynomial has an integer root.
 - Actually, he said, a process according to which it can be determined by a finite number of operations.

- What is even an algorithm?
- But how do we go about proving this? That no such algorithm exists?
- As it turns out, there is no such algorithm.

Motivation

- Why is even an algorithm?
- What do we mean by an algorithm?
- How can we prove that there is no such algorithm?
- Hilbert's tenth problem was to devise an algorithm that tests if a given polynomial has an integer root.
- The number of operations is finite, and it is a process according to which it can be determined by a finite number of operations.

- A problem is a process problem if all variables have integer values.
- A tool is an assignment of values to its variables so that the value is 0.
- A tool is an assignment of values to its variables so that the value is 0.

- Integral roots of a polynomial are:

- Integral roots of a polynomial are:
Describing TM

• Formal description
 - States and transitions

• Implementation level
 - How the head moves, how it stores data on the tape

• High-level description
 - Describe the algorithm

• Abstract away from how machines works. Only use this when comfortable with how TMs work.

Overview

• Nondeterminism
• Algorithms
• Enumerators
• Notation
Input

- Encode a TM so another TM can use it as input.

- Encode a DFA so a TM can use it as input.

- Encode a graph G so a TM can use it as input.

- If we want to encode two objects O₁ and O₂ as input:\n ⟨⟨O₁, O₂⟩⟩

- For object O₁, we will refer to its string encoding as a string.

If you want to give it some object, you must encode it as a string.

TM's always take a string as input.