Example

NFA whose language is 4 last characters are 1010

Give state diagram:

Give grammar rules:
PDA ⇒ Context-Free Grammar: Idea

- How do we expand our proof to account for a PDA?
- How does a PDA differ from an NFA?
- Change our definition of A_{pq}

$A_{pq} \rightarrow A_{pr} A_{rq}$ for every r

Grammar needs base cases

A Few More Details
Simplified PDAs

To simplify the proof, let's use simpler version of PDAs:

- Has a single accept state
- Empties the stack before accepting
- Has a single accept state

Can any PDA be converted into this simplified form?

- Each transition either pushes a symbol onto stack or pops one off stack
- If transition doesn't push or pop, split into two, in which first pushes and second pops some character
- Transition doesn't push or pop, split into two, in which first pushes and second pops some character
- Transition pushes and pops, split into two transitions, with a new state
- Do every thing off until we get to ϵ
- Add extra states so that we start by pushing ϵ onto the stack, and after accepting pop everything off the stack
- If multiple acceptors, add a new one, and transition to it with an epsilon read, no pop of the stack

To simplify the proof, let's use simpler version of PDAs:

PDA \Rightarrow Context-Free Grammar

Proof Idea:

- We have a PDA P, we want to construct a CFG G, that generates $L(P)$
- For each pair of states a and b in P, create a new production $S_{ab} \rightarrow \epsilon$
- So can be used for starting and ending with the same stack
- Start with an empty stack and ending an empty stack
- Grammar will generate all possible strings in some form from top to bottom

$P_{real} \Rightarrow$ PDA

$P_{real} \Rightarrow$ Context-Free Grammar
More Formally

Say that $P = (Q, \Sigma, \Gamma, \delta, q_0, \{ q_{\text{accept}} \})$

- Construct G as follows
 - The variables are $\{ A_{pq} \mid p, q \in Q \}$
 - For each $p, q, r, s \in Q$, $t \in \Gamma$, and $a, b \in \Sigma$ ϵ^+ if $(r, t) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$, add rule $A_{pq} \rightarrow aA_{rs}b$
 - For each $p, q, r \in Q$, add the rule $A_{pq} \rightarrow A_{pr}A_{qr}$
 - For each $p \in Q$, add the rule $A_{pp} \rightarrow \epsilon$

Construct G as follows

$(\{p_{\text{accept}}\} \cup \{ q \mid q \in Q \} = d$ =

Designing the Grammar

- How do we end? $A_{pp} \rightarrow \epsilon$
 - Start variable: $A_{q_0q_{\text{accept}}}$
 - How do we begin? ϵ $\rightarrow^{d_{dV}} V$

Case 1: The initial push is popped at the very end

- Case 1: if the initial push is popped at the very end
 - The initial push is popped at the very end

Case 2: The initial push is popped part-way through

- Case 2: if the initial push is popped part-way through
 - The initial push is popped part-way through

Cass 2: If the initial push is popped part-way through

- Cass 2: if the initial push is popped part-way through
 - The initial push is popped part-way through

So if C generates all strings that can take b to d, then $A_{pq} \rightarrow^*$ ϵ
Claim: if Grammar generates x so does PDA

Claim 2.30: If A_{pq} generates string x, then x can bring P from p with empty stack to q with empty stack.

- We prove this claim by induction on the number of steps in the derivation of x.

 Basis: derivations has 1 step b_{td}

 We prove this claim by induction on the number of steps in the derivation of x.

 - Claim: if Grammar generates x so does PDA

Proof

- Must show
- If PDA accepts x, Grammar can generate x
- If Grammar generates x, PDA accepts x
- Claim: if Grammar generates x, PDA accepts x
- Claim: if Grammar generates x, PDA accepts x
- Corollary: if Grammar generates x, PDA accepts x
- Corollary: if Grammar generates x, PDA accepts x
- Corollary: if Grammar generates x, PDA accepts x
- Corollary: if Grammar generates x, PDA accepts x

- Must show
Continued: if Grammar generates x so does PDA

- Case 2: First step in derivation is $A_{pq} \Rightarrow A_{pr}A_r$.
 - Say $A_{pr} \Rightarrow y$ and $A_r \Rightarrow z$.
 - Each does in less than $k + 1$ steps.
 - So P can generate y going from p to r starting/ending with an empty stack.
 - And P can generate z going from r to q starting/ending with an empty stack.

- So, P can generate $yz = x$ going from p to q.

- Induction: if Grammar generates x so does PDA

 • Assume true for derivations of length at most k, where $k \geq 1$.
 • Prove for deviation of length $k + 1$.
 - Assume $A_{pq} \Rightarrow x$ with $k + 1$ steps.
 - Case 1: 1st step in deriv. is $A_{pq} \Rightarrow aA_{rs}b$ where $a, b \in \Sigma$ and $r, s \in Q$.
 - Say that $A_{rs} \Rightarrow y$ in the derivation, so $x = ayb$.
 - So P can go from r to s starting/ending with an empty stack and generate y.
 - So if P starts at p with empty stack.
 - Then after reading a it can go to state r and push t on the stack.
 - Then reading string y can bring it to state s leaving t on the stack.
 - Then after reading b it can go to state q and pop t off the stack.
 - So, P can go from p to q with empty stack, reading $ayb = x$.

- Case 2: First step in derivation is $A_{pq} \Rightarrow A_{pr}A_r$.
 - Say $A_{pr} \Rightarrow y$ and $A_r \Rightarrow z$.
 - Each does in less than $k + 1$ steps.
 - So P can generate y going from p to r starting/ending with an empty stack.
 - And P can generate z going from r to q starting/ending with an empty stack.

- So, P can generate $yz = x$ going from p to q.
Claim: If PDA accepts x so does Grammar

Continued: if PDA accepts x so does Grammar

• Case 1: stack is empty only at beginning and end
 - Symbol pushed at beginning must be same as symbol popped at end, say t
 - Let a be the input read in the first move, and b be the input read in the last
 - Let r be the state after the first read, and s be the state before the last read
 - Let y be such that $x = ayb + P$ can go from r to s by reading y without touching symbol t, and so P can go from r to s by reading y without touching symbol t, and so can G
 - Let y be such that $x = ayb$ can go from r to s by reading y with an empty stack at begin and end
 - So, rule $A_{pq} \rightarrow aA_{rs}b$ is in G
 - By induction, $A_{rs} \ast \Rightarrow y$
 - Hence $A_{pq} \ast \Rightarrow ayb = x$

Proof by induction on number of steps in computation of P

\[x = \phi \Rightarrow \phi \Rightarrow^{bd} \phi \Rightarrow^{+} \]

- Basis: computation has 0 steps from P
 - b comes in, d goes out, and not touched the stack
 - With empty stack, x

Claim 2.31: If string x can bring P from y to z in k steps, then G can bring x to z in k steps, where $y \leq 0$

- We use the rule $x \Rightarrow^{+}$ or generates x, as required
 - If in steps, we can just stay in the same state b, and we will have read b from d
 - Proof by induction on number of steps in computation of G
 - With empty stack, x generates x in G

Claim: If PDA accepts x so does Grammar
Relationship to Regular Languages

- So every regular language is context-free.
- So a PDA can recognize L.
- Any FA is also a PDA, just with ε pops and pushes of stack.
- So if there is an FA D such that L(D) = L, let D be a regular language.

Continued: if PDA accepts x so does Grammar

- Case 2: Stack is empty somewhere in middle of computation.
 - Let S be the state where the stack is empty.
 - Then the portion of the computation from S to S′ has zero steps.
 - Say y is read from during first part (S to S′) and z is read from S′ to t.
 - Induction tells us that A_{S} \rightarrow y and A_{S′} \rightarrow z.
 - We have rule A_{S} \rightarrow yA_{S′} in G, so A_{S} \rightarrow yz = x.

\[x = zfi \xleftarrow{bd} \text{ in } C, \text{ so } A_{S} \xrightarrow{bd} A_{S′} \xleftarrow{def} \text{ in } G. \]