Prefix DFA

Prefix DFA

Overview

Constructing Complex FA

=
Correctness of Proof

If A accepts any string, there must be a path from the start to an accept state in M. That same path is in N, so N must accept ε.

If A does not accept any string, there is no path from start to an accept state in M. So there is no path in N, so N does not accept anything.

Epsilon Transitions

Let $L = \{ \varepsilon \}$ if A is not empty, and \emptyset otherwise.

We know that either way, L is a regular language - in either case, it is easy to build a DFA for L.

Build a machine N for L based on M, with the same set of states.

But let's say that we want to build a FA for L based on N.

In real, all finite languages are regular.

Let L be a FA that recognizes A is a regular language, and N a DFA that recognizes ε.

$\{ b \in \{ a, b \} \mid \text{there is } a \in \{ a, b \} \text{ s.t. } \delta_M(q, a) = q' \}$

Note that M is now a NFA, but that is fine.
More formally

- State of P is N, start state, and accept states are N, accept states, and N, accept states
- $\delta_P(\cdot, 0) = \{ q' \}$ for all corresponding states q and q'. Also has the following transitions:
- δ_P has all of the transitions from N and M
- Call N, states $u \ldots v$, and N, states $u \ldots w$
- States of P are the union of states of M and N (not cross product)
- δ function:
 - $f = \{(a \cdot b) \in \delta_N | b \}$
- $g = \{(a \cdot b) \in \delta_M | b \}$
- Construct N, similar to N, same states, same start state, same accept

Second Way to Show Prefix is Regular

$L = \{ w | w \in A \}$ where A is regular
- Let A be a DFA for A
- Make a new machine P that joins M and N together
- Make a copy of N, call it N'
- Have N''s transition be same as N, but replace ϵ instead of characters
- Add transitions from states of M to corresponding states of N on reading ϵ
- δ_P also has the following transitions:
- $\delta_P(\cdot, 0) = \{ q' \}$ for all corresponding states q and q'. Also has the following transitions
Common Prefix

Let \(M \) be a DFA that recognizes \(A \) and \(N \) be a DFA that recognizes \(B \).

- Build machine \(P \) in the same way we built a DFA that does intersection

 - Turn all non-accept states into accept states

 - Build machine in the same way we built a DFA that does intersection

More formally:

- Create \(P \) as follows
 - \(P \) has union of states of \(M \) and \(N \)
 - Start state of \(P \) is \(M \)'s start state
 - Accept states of \(P \) are \(N \)'s accept states
 - Transitions of \(P \) are union of \(M \)'s transitions and \(N \)'s transitions along with \(\delta(q, \epsilon) \rightarrow q' \) for all of \(q \) in \(M \)'s states and \(q' \) in \(N \)'s states

Splicing

Let \(M \) be a DFA where \(A \) and \(B \) are both regular.

- \(L = \{ x \in \Sigma^* | \exists n \in \mathbb{N} \text{ such that } m \cdot x \in \Sigma^* \} \)