Example 1.41

- Convert DFA using construction in Proof of Theorem 1.39

- What are the states of DFA D?

- What are the start and accept states?

+ Determine $E(q_0)$

- Determine accept states (those with accept state from N)

- Determine transitions using union and E

- Can remove states with no input
Theorem 1.47: The class of regular languages is closed under the concatenation operation.

Proof Idea:

\[A \circ B = \{ xy \mid x \in A \text{ and } y \in B \} \]

Theorem 1.49: The class of regular languages is closed under the star operation.

Proof Idea:

\[A^* = \{ x_1 x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A \} \]

Theorem 1.45: Regular languages are closed under the union operation.

Proof Idea: We can use NFA to prove this with simpler construction than we did with DFAs.
In arithmetic, we can use operations to build up expressions describing languages. For example:

- \((0 \cup 1)^*\)
- This has a value of \(2^*\)
- \(\times (2 + 3)\)

Similarly, we can use operations to build up expressions describing languages. For example:

- \((5 + 3) \times 4\)

In arithmetic, we can use + and \(\times\) to build up expressions.
Another Example

• (0 ∪ 1)∗

- Starts with the language (0 ∪ 1) and applies the * operation
- Any string of 0's and 1's

If \(\Sigma = \{0, 1\} \), we can write \(\Sigma \) as shorthand for \((0 \cup 1) \). Since concatenating any number of symbols combining any number of strings of a language is the language consisting of all \((0 \cup 1) \). So, \((0 \cup 1) \) means the language \(\{0, 1\} \). Thus, \((0 \cup 1) \) is shorthand for the sets \(\{0\} \) and \(\{1\} \).
Notes

• Use $L(H)$ to refer to language of a regular expression H
• $R+$ shorthand for R^*
• Just like in arithmetic, precedence order is: star, concatenation, union
• Parentheses can be omitted
 - Inductive definition
 - Circular definition?
• Difference between ε and \emptyset?

Formal Definition

Definition 1.52: We say that R is a regular expression if R is
1. a for some a in the alphabet
2. ε
3. \emptyset
4. $(R_1 \cap R_2)$, where R_1 and R_2 are regular expressions
5. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions
6. $(R_1)^*$, where R_1 is a regular expression

Computation

item 1. ε represents the language obtained by taking the union of all combinations of ε and \emptyset
item 2. \emptyset represents the language obtained by taking the union of all combinations of ε and \emptyset
item 3. a is the empty language
item 4. $\{a\}$, $\{\varepsilon\}$, respectively
item 5. $\{a\} \cup \{\varepsilon\}$, respectively
item 6. $(R_1)^*$, where R_1 is a regular expression

For some a in the alphabet

Definition 1.52: We say that R is a regular expression if R is
Examples

• 0^*10^*
• $\Sigma^*1\Sigma^*$
• $\Sigma^*001\Sigma^*$
• $1^*(01^+)^*$
• $(\Sigma\Sigma)^*$
• $01 \cup 10$
• $1^*\emptyset$
• \emptyset^*

Identities

• $R \cup \emptyset$
• $R \circ \epsilon$
• What about?
 - $R \circ \emptyset$
 - $R \cup \epsilon$
Regular Expression \rightarrow Regular Language

- Proof Idea: build a NFA to recognize the language
- Make a NFA for each of the 6 cases from the formal definition of regular expression

$$R^1 \cdot$$
$$R_1 \circ R_2$$
$$R_1 \cup R_2$$
$$\emptyset = R$$
$$\epsilon = R$$
$$\nu = R$$

Equivalence with Finite Automata

Theorem 1.54: A language is regular if and only if it is described by a regular expression.

In other words, a language can be recognized by a NFA iff it is.

Regular Expression \leftrightarrow Regular Language

$\circ P$ Heeman, 2017
Regular Language \rightarrow Regular Expression

- Proof idea: convert DFA into a regular expression
- Generalized nondeterministic finite automaton (GNFA)

Example $(ab \cup a)^*$

- Convert to NFA

$\{(a \cap qa) - (a \cap qa) - qa - q - \}$

Convert to NFA
Induction

• GNFA (in restricted form) with more than 2 states
 • Proof Idea:
 - Remove a state that is not the start nor accept state
 + Repair the labels on the remaining transitions
 • Proof Idea in more detail:
 - Remove state q_{rip}
 - Alter label from q_i to q_j
 + Say R_4 was label from q_i to q_j
 + Say R_1 is label from q_i to q_{rip}
 + Say R_2 is self-loop label on q_{rip}
 - New label is $R_4 \cup (R_1)(R_2)^* R_3$

Proof

• Easy to convert DFA into GNFA
 - Make a new start state with epsilon transition to old start state
 - Make a new accept state with epsilon transition from old accept state
 - Add arrows labeled \(\emptyset \) where needed
 - Any arc with multiple labels use union instead
 - No self loops (aren't allowed on start and accept)
 - One will be start and one will be accept
 - Base Case: Just has 2 states
 + Just one transition

In this case all work is done on start and accept.
Example: Convert into a Regular Expression