Deduction

• Not in book

Show something is equivalent to a different problem

Prove that regular languages are closed under complementation

Let \(L \) be any regular language

So there exists a DFA that recognizes \(L \)

So there exists a string in the alphabet of \(\Sigma \)

So there exists a DFA that recognizes \(L \)

From a set of facts, deduce something that must be true

Closure Properties of Regular Languages

• Induction
• Construction
• Contradiction
• Deduction
Overview

• Deduction
• Construction
• Contradiction
• Induction
• Closure Properties of Regular Languages

How Much Detail?

• How is current line derived?
 - You can label each line and show what is used in deriving new lines
 - You don't have to be super detailed
 - Or spell out what happens if $n = 0$, then there are no w_i
 - If obvious, or just use the previous line, don't need to number them
 - You can label each line and show what is used in deriving new lines
 - How is current line derived?
Regular Languages Closed under Complementation

Let \(L \) be any regular language
Sufficient to show that \(\overline{L} \) is regular
Sufficient to show there exists a DFA that recognizes \(\overline{L} \)

Since \(L \) is regular, there exists a DFA that recognizes it. Call it \(M \)

Let \(M = (Q, \Sigma, \delta, q_0, F) \)

Construct DFA \(M' = (Q, \Sigma, \delta, q_0, F') \)
where \(F' = Q - F \)

Claim: \(L(M') = \overline{L} \)

Let \(w \in L \)
So \(M \) accepts \(w \)
Let \(q \) be the state that \(M \) is in at the end of processing \(w \)
So \(q \in F \).

So when \(M' \) processes \(w \), at the end of processing \(w \), it will also be in \(q \).
Let \(q' \in F' \), \(q' \neq q \)

Since \(q \) is in \(F \), \(q' \) is not in \(F' \), \(M' \) does not accept \(w \)
So \(w \not\in L(M') \)

Similarly, if \(w \in L(M') \)
then \(w \not\in L \)
So \(L(M') = \overline{L} \)
Overview

- Deduction
- Construction ⇒ Contradiction
- Induction
- Closure Properties of Regular Languages

How Much Detail?

- How much detail is needed?
 - Need to convince me that you know how to do the proof
 - Should be clear what you need to prove (and why)

- Do you need to show construction does as is intended?
 - Sometimes you can handwave
 - Should be clear when you need to prove (and why)

- How much detail is needed?
 - Notice the word ‘let’, as in ‘let x be’...
 - Sometimes you can handwave

So \(I = \langle M' \rangle I \) and if \(m \in I \) then \(I \not\in L \) and if \(m \not\in I \) then \(I \in L \). Could add:

Is the last line obvious enough?

- Notice the word ‘let’, as in ‘let x be’...
- Sometimes you can handwave

- Do you need to show construction does as is intended?
 - Sometimes you can handwave
 - Should be clear when you need to prove (and why)
Let $A = \{a^i b^i \mid i \geq 0\}$. Assume A is regular. So there exists DFA M such that $L(M) = A$.

Let n be the number of states that M has.

Let $s = a^n b^{n+1}$. Obviously $s \in L(M)$.

Let r_0, \ldots, r_{2n+2} be the state sequence for accepting s.

Now consider the state sequence from r_0 to r_n in which each r_k on input a transitions to r_{k+1} for $k \leq n$ (i.e., $\delta(r_k, a) = r_{k+1}$).

Since M just has n states, there must be at least one duplicate to reach r_{n+1} for r_k in which each r_k on input a transitions.

Let r_i and r_{i+j} be duplicate states, with $j > 0$, so $r_i = r_{i+j}$.

Since M can transition from r_{i+j} to r_{i+j+1} on a,

r_i can transition to r_{i+j+1} on a, since they are the same state.

So, we can cut out the intervening j states and still have an accepting state sequence.

So, $r_0, \ldots, r_i, r_i+j+1, \ldots, r_{2n+2}$ is a valid state sequence and accepts $a^{n+j} b^{n+1}$. So A is not regular.

Proof by Contradiction

• If you have to prove X assume that X is false, and show that you get a contradiction.

• Sometimes this is easier than trying to directly prove X. If you have to prove X,
Induction

• Prove that all Xs have a certain property where all Xs can be categorized in terms of some property P based on the natural numbers, such as
 - number of states in a DFA
 - number of nodes in a graph
 - number of edges in a graph
 - some variable that is restricted to the natural numbers

• Break problem into a base case and an induction step
 - Base case: prove that $P(1)$ is true
 - Induction step: prove that if $P(i)$ is true for $i \geq 1$, then so is $P(i+1)$

• After proven both parts, you know that $P(i)$ must be true for $i \geq 1$.

• Prove that all Xs have a certain property where all Xs can be categorized in terms of some property P based on the natural numbers.
Prove that \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) for \(n \geq 1 \).

Proof by Induction:

Base case: prove for \(n = 1 \)

\[\text{LHS} = \sum_{i=1}^{n} i = 1 \]

\[\text{RHS} = \frac{n(n+1)}{2} = \frac{1(1+1)}{2} = 1 \]

Since LHS = RHS, true for base case

\(\ast \)

Continued

• Many variations of this:
 - Starting at a number other than 1
 - Needing to prove two base cases \(P(1) \) and \(P(2) \)
 - Needing to assume \(P(j) \) is true for all \(j \leq i \) in order to prove \(P(i+1) \)

- Stating at a number other than 1

(\(\star \))
Overview:

- Deduction
- Construction
- Contradiction
- Induction

⇒ Closure Properties of Regular Languages

Continued:

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]

\[\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2} \]

Since LHS = RHS, true for \(n + 1 \).

Induction Step: Assume it is true for \(n \), prove it is true for \(n + 1 \).
Proof Idea (continued)

Approach 1:
- We could have M_1 first simulate M_1 and then simulate M_2
- This won't work because in simulating M_1, we will have used up the input with w, and we won't be able to get it back

Approach 2:
- Simulate both M_1 and M_2 at the same time!
- Have the states of M be the product of states of M_1 and M_2
- Have the transition function for M on w transition to the new state depending on what M_1 and M_2 would have individually done
- Have accepting states of M be any state with an accepting state from M_1 or from M_2

Closed under Union

Definition of Union:
$$A \cup B = \{ x | x \in A \text{ or } x \in B \}$$
• What are the states of M (draw them in a 3x2 array)?

• What are the transitions of M?
 - Take each state, like a, and each input, like 0, and ask:
 - Where does M^1 transition to from a on 0?
 - Where does M^1 transition to from a on 0?

Example Continued

Example

Let $\Sigma = \{0, 1\}$

Let A^1 be strings in which the number of 0's is divisible by 3
- Draw a state diagram for M^1 with 3 states: a, b, c
 - Draw the 3 states horizontally

Let A^2 be strings that have an even number of 1's
- Draw the 2 states vertically
 - Draw a state diagram for M^1 with 2 states: d, e

Let A^3 be strings that have an even number of $\{0, 1\}
- Draw the 3 states horizontally

Let A^4 be strings in which the number of 0's is divisible by 3
- Draw a state diagram for M^1 with 3 states: a, b, c
Other Operations

- Are regular languages closed under Intersection?
 \[A \cap B = \{ x \mid x \in A \text{ and } x \in B \} \]

- Complementation?
 \[A = \{ x \mid x \notin A \} \]

- Concatenation?
 \[A \circ B = \{ xy \mid x \in A \text{ and } y \in B \} \]

- Star?
 \[A^* = \{ x_1 x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A \} \]

Formal Proof

Let \(M_1 \) recognize \(A_1 \) where
\[M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \]

Let \(M_2 \) recognize \(A_2 \) where
\[M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \]

Construct \(M \) to recognize \(A_1 \cup A_2 \) where \(M = (Q, \Sigma, \delta, q_0, F) \)

\(\delta \): Construct to recognize \(A_1 \cup A_2 \) where
\[\delta' \]

\(q_0 \): Construct to recognize \(A_1 \cup A_2 \) where

\(F \): Construct to recognize \(A_1 \cup A_2 \) where

- Construct to recognize \(A_1 \cup A_2 \) where

- Construct to recognize \(A_1 \cup A_2 \) where

- Construct to recognize \(A_1 \cup A_2 \) where