 Agenda for today

• Suffix Trees
 – Introduction and definitions
 – Linear-time construction
 – Deterministic exact string matching

• Time permitting, further related topics
 – Suffix automata
 – Suffix arrays
Suffix Trees

• Given a string S of length m, a suffix tree T encodes all suffixes, i.e., $S[i, m]$ for $1 \leq i \leq m$

• Concatenation of symbols labeling edges along the path from root to leaf spells out suffix

• Leaves are numbered with i, the start index of the suffix

• Edges can be labeled with one or more symbols

• Internal (non-leaf) nodes must have more than one child

• No two children leaving a node can start with the same symbol

• Tremendously useful data structure for many problems
```
x t p x t d $
```

<table>
<thead>
<tr>
<th>Start</th>
<th>suffix</th>
<th>Start</th>
<th>suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>xt px t d $</td>
<td>4</td>
<td>xt d $</td>
</tr>
<tr>
<td>2</td>
<td>tp x t d $</td>
<td>5</td>
<td>t d $</td>
</tr>
<tr>
<td>3</td>
<td>px t d $</td>
<td>6</td>
<td>d $</td>
</tr>
</tbody>
</table>

![Diagram]
How can we use it?

• Exact match: e.g., how many times does xt occur?

• Algorithm: order n (size of pattern) rather than order m (size of text)
 – Start at the root
 – Match pattern along branches in tree
 – Number of leaf nodes is the number of instances
 – Indices give you the locations

• Useful in scenarios where text is given in advance, and used for many pattern matches
Problem: how to build

- Naive method too expensive:
 - Put suffix $S[1, m]$ into the tree
 - Then put $S[i, m]$ into the tree for $2 \leq i \leq m$
 - m^2 complexity

- Several linear-time suffix tree construction algorithms

- We will consider Ukkonen’s algorithm, which has several key ideas, including
 - Suffix links (similar to failure links)
 - String indices instead of characters
Basic idea

- Build suffix tree incrementally from left-to-right
- Build “implicit” suffix trees (no end-of-string marker)
- Extend the implicit suffix trees from the previous step
- Convert implicit suffix tree to explicit in final step
Step 1: $x \, t \, p \, x \, t \, d$
Step 2: $xt \ p \ xt \ d$
Step 3: x t p x t d
Step 4: x t p x t d
Step 5: x t p x t d
Step 6: $xt \ p \ xt \ d$
Step 7: finalize
Efficient construction

- To really make this tractable, several clever “tricks”
 - Suffix links (like failure links)
 - Represent sequences as beginning and ending indices
 - Automatic extension for leaves (via global “end” index)
 - Early stopping of suffix link extensions
 - Check only first letter when following suffix link extensions ("Skip/count" trick)
- In aggregate, these make for tractable suffix tree construction

Suffix links

- Note that every suffix of a suffix in the suffix tree must also be in the suffix tree
- For example: if $abcd$ is in the tree, so are: bcd, cd, d
- If we extend a suffix, its suffixes will also be extended
 - e.g., if $abcd+e$, then $bcd+e, cd+e, d+e, e$
- Need to find them (via suffix links) to extend them
- Can use the suffix links of parents in tree for quick access
Suffix links: xyz
Suffix links: xyz
Suffix links: \(xyz \)
Suffix links: xyz
Suffix links: xyzabc
Finding suffix link for node X

- Go to parent node Y
- Denote $x\alpha$ string labeling $Y \rightarrow X$, $x \in \Sigma$, $\alpha \in \Sigma^*$
- If Y is the root of the tree
 - If $\alpha = \epsilon$, set Z to Y
 - Else set Z to state reached from Y with transitions labeled α
- Else
 - Set Y to destination state of suffix link from Y
 - Set Z to state reached from Y with transitions labeled $x\alpha$
- Create suffix link from X to $Z
Some notes about suffix links

- Every previously created node (except root) has suffix link
- May require multiple transitions to generate all of string
- String is guaranteed to exist from suffix link of the parent (or root)
 - Only one transition leaving each state per letter
 - Hence only need to check first letter (skip/count)
Begin/End indices: xyzabc
Global end index: xyzabcxyzr
Final “tricks”

• Two situations as yet unobserved

• Early stopping
 – The first node where an extension is found is sufficient
 – All subsequent suffix links will have a match

• Skip count
 – When finding suffix link, just match first character
 – Rest of characters on arc MUST match
Early stopping and Skip/count: $xyztyzrxyzr$
Early stopping and Skip/count: \texttt{xyztyzrxyzr}
Early stopping and Skip/count: $xyztyzrxyzr$
Early stopping and Skip/count: $xyztyzrxyzr$
Early stopping and Skip/count: $xyztyzrxyzr$
Early stopping and Skip/count: \texttt{xyztyzrxyzr}
Early stopping and Skip/count: $xyztyzrxyzr$
Early stopping and Skip/count: xyztyzrxyzr
Early stopping and Skip/count: xyztyzrxyzr
Early stopping and Skip/count: \texttt{xyztyzrxyzr}
Early stopping and Skip/count: \texttt{xyztyzrxyzr}
Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
x t p y x t p z x t p y x t p r
Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
x t p y x t p z x t p y x t p r

1, e
Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
x t p y x t p z x t p y x t p r

1, e

2, e
Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
x t p y x t p z x t p y x t p r

1, e
2, e
3, e
4, e
Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
x t p y x t p z x t p y x t p r
Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 x t p y x t p z x t p y x t p r

Diagram:

- Node 1,3
- Node 2,3
- Node 3,e
- Node 4,e

Lines:
- 4,e to 1,3
- 4,e to 2,3
- 3,e to 4,e
Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
x t p y x t p z x t p y x t p r
Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

x t p y x t p z x t p y x t p r
Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
x t p y x t p z x t p y x t p r
Example: \[\begin{array}{cc
Example:

\[\begin{array}{c}
\text{x t p y x t p z x t p y x t p r}
\end{array}\]
Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
x t p y x t p z x t p y x t p r
Searching for occurrences

- Start at the root
- Search for match in tree
- Count the number of leaf nodes below point where word matches
- Linear in the length of the pattern, not the text
- Example: how many times does xt occur in text? t? py?
Characteristics of suffix trees

• One transition out of each state for any given symbol in Σ

• Size requirements quite large: $O(m|\Sigma|)$ for length m
 – m states, Σ continuations per state
 – Can hash, resulting in less space usage, but $O(n \log |\Sigma|)$
 time to search, rather than $O(n)$

• With linear-time algorithm to build, construction not the problem

• Storage and use is the problem
Suffix automata

- One space saving idea: turn tree into directed acyclic graph (DAG)
- Convert tree to finite-state automaton with re-entrancies
 - Tree is a special case of FSA: start state at root, final states at leaves
 - Further, tree is deterministic FSA
 - Minimize the tree to a minimal automaton
- Potentially massive space savings on final graph
Example suffix tree
Change to suffix automata: directed edges, final states
Change to suffix automata: collapse states
Change to suffix automata: collapse states
Change to suffix automata: collapse states
Deterministic suffix automata

• Large space savings. In this case:
 – from 16 final states, 8 internal states, 23 arcs
 – to 6 final states, 3 internal states, 11 arcs

• Can be achieved with well-known graph minimization algorithms

• One particular problem in exact match:
 – For a given final state, may have reached there via various paths
 – Hence extra work to identify indices of matches

• Can get additional space savings with ϵ transitions
Suffix automata with no ϵ transitions
Suffix automata with ϵ transitions
Another clever space savings idea is the suffix array

Note that, for text of length m, there are exactly m suffixes

Thus, in an array of m ints, we can store the suffix indices in alphabetical order

For any given pattern, all of the suffixes beginning with the pattern would be adjacent in the array

Much better space usage, not bad exact match time
<table>
<thead>
<tr>
<th>Suffix idx</th>
<th>Suffix</th>
<th>String pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pr</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>pyxtpr</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>pyxtpzxtpyxtpr</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>pzxtpyxtpr</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>r</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>tpr</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>tpyxtpr</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>tpxtyptzxtpyxtpr</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>tpxtptpyxtpr</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>xtpyr</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>xtpyxtpr</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>xtpyxtptpzxtpyxtpr</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>xtpzxtpyxtpr</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>yxtpr</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>ytxtpzxtpyxtpr</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>zxtpyxtpr</td>
<td>8</td>
</tr>
</tbody>
</table>
Building suffix array

- Each state in suffix tree has at most one arc for each letter
- If we sort the arcs leaving each node in alphabetical order
 - Follow a pre-order (depth first) traversal of the tree
 - Emit indices of leaf nodes as encountered
Example suffix tree
Suffix tree, letters again
Suffix tree, node order
Suffix tree, pre-order enumeration
Searching with suffix array

- Perform binary search on the suffix array: $O(n \log m)$
- Can do better than this with clever preprocessing
 - Want to avoid comparisons that are not necessary
- Suppose we have one match in the suffix array
 - The neighbors may or may not be matches
 - How many characters do we need to check?
 - If we know the *longest common prefix* (LCP) of the neighbors, we know where to begin
- Can build a binary search tree with pre-compiled LCP values at each node
Longest common prefix

- Have enough information to calculate pair-wise LCP in suffix tree
- In pre-order traversal of suffix tree to build the suffix array:
 - The LCP between suffix id\(x\) \(i\) and suffix id\(x\) \(i+1\) is the depth in the tree of the lowest common ancestor node of the suffixes
 - (Recall that the depth of a node is the length of the string labeling arcs reaching that node)
- Critical lemma for easy LCP accumulation in binary tree:
 For any \(i, j\) such that \(j > i+1\),
 \[
 \text{LCP}(i, j) = \min_{i \leq k \leq j-1} \text{LCP}(k, k + 1)
 \]
- In binary tree, take the smallest value from the two children
Suffix tree, pre-order enumeration
Suffix array:

<table>
<thead>
<tr>
<th>Suffix idx</th>
<th>Suffix</th>
<th>String pos</th>
<th>LCP(i, $i+1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pr</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>pyxtpr</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>pyxtpzxtpyxtpr</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>pzxtpyxtpr</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>r</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>tpr</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>tpyxtpr</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>tpyxtpzxtpyxtpr</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>tpzxtpyxtpr</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>xtpr</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>xtpyxtpr</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>xtpyxtpzxtpyxtpr</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>xtpzxtpyxtpr</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>yxtpr</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>yxtpzxtpyxtpr</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>zxtpyxtpr</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>