Pre-processing for good suffix

• For a given i, let $k = |P| - i + 1$, i.e., the length of $P[i, |P|]$
 – Let $L(i) = j < |P|$ be the largest position such that $P[i, |P|]$ matches $P[j-k+1, j]$ and $P(j-k) \neq P(i-1)$
 – If no such j exists, $L(i) = 0$

• Let $l(i)$ be the length of the largest suffix of $P(i, |P|)$ that is also a prefix

• These can be calculated in linear time (see Gusfield)
Position: 1 2 3 4 5 6
String: x t p x t d
Z_i: 0 0 2 0 0 0
$L(i)$: 0 0 0 0 0 0
$l(i)$: 0 0 0 0 0 0

$R(x) = 4$
$R(t) = 5$
$R(p) = 3$
$R(d) = 6$
Using good suffix and bad character

• Using simple bad character and strong good suffix

• Bad character: shift P by $\max(1, i - R(T(k)))$

• Good suffix:
 – If an occurrence of P is found then shift P by $|P| - l(2)$
 – Else if $i = |P|$ then advance P by 1
 – Else if mismatch is at $i-1$ of P and $L(i) > 0$ then shift P by $|P| - L(i)$
 – Else shift P by $|P| - l(i)$

• Shift by the max of these two rules
For current example

• All $l(i)$ and $L(i)$ are 0, hence Good Suffix rule becomes:

 – If $i = |P|$ and no match, advance by 1

 – otherwise if no match, advance by $|P|$
Align both strings at their beginning position and begin comparing from the last character of P

Comparisons: 1

$R(x) = 4; R(t) = 5; R(p) = 3; R(d) = 6$
If symbols don’t match, shift \(P \) by the max of the good suffix and bad character rules.

Comparisons: 2

\(R(p) = 3 \), hence bad character: shift \(\max(1,6-3)=3 \)

\(i = |P| \), hence good suffix: shift 1
Boyer-Moore

If symbols match, compare previous symbols

Comparisons: 3
Boyer-Moore

If symbols match, compare previous symbols

Comparisons: 4
Boyer-Moore

If symbols match, compare previous symbols

Comparisons: 5
If symbols match, compare previous symbols

Comparisons: 6
Boyer-Moore

If symbols match, compare previous symbols

Comparisons: 7
If P is found, shift P by $|P| - l(2)$, begin at end

Comparisons: 8

$R(x) = 4; R(t) = 5; R(p) = 3; R(d) = 6$
If symbols don’t match, shift P by the max of the good suffix and bad character rules

Comparisons: 9

$R(t) = 5$, hence bad character: shift max(1,6-5)=1

$i = |P|$, hence good suffix: shift 1
Boyer-Moore

If symbols don’t match, shift P by the max of the good suffix and bad character rules

Comparisons: 10

$R(p) = 3$, hence bad character: shift $\max(1,6-3)=3$

$i = |P|$, hence good suffix: shift 1
If symbols don’t match, shift P by the max of the good suffix and bad character rules

Comparisons: 11

$R(s) = 0$, hence bad character: shift $\max(1, 6-0) = 6$

$i = |P|$, hence good suffix: shift 1
If symbols don’t match, shift P by the max of the good suffix and bad character rules

Comparisons: 12

$R(t) = 5$, hence bad character: shift $\max(1, 6-5) = 1$

$i = |P|$, hence good suffix: shift 1
Boyer-Moore

If symbols match, compare previous symbols

Comparisons: 13
If symbols match, compare previous symbols

Comparisons: 14
If symbols match, compare previous symbols

Comparisons: 15
If symbols match, compare previous symbols

Comparisons: 16
If symbols match, compare previous symbols

Comparisons: 17
Boyer-Moore

If P is found, shift P by $|P| - l(2)$, begin at end (past end... finished)

Comparisons: 17

vs. 42 for naive algorithm and 30 for Knuth-Morris-Pratt
Boyer Moore algorithm

- Current example does not show some parts of Boyer Moore that are de-emphasized in the text
- When using the good suffix for shifting with $L(i)$ or $l(i)$, some of string is already matched
- Without skipping already matched material, lots of duplicate effort
Good suffix rule (strong)

Illustration from Gusfield

<table>
<thead>
<tr>
<th>T</th>
<th>x</th>
<th>t</th>
</tr>
</thead>
</table>

P before shift

| P before shift | z | t' | y | t |

P after shift

| P after shift | z | t' | y | t |
Good suffix rule (strong)

Illustration from Gusfield

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>x</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P before shift</th>
<th></th>
<th>z</th>
<th>t'</th>
<th>y</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P after shift</th>
<th></th>
<th>z</th>
<th>t'</th>
<th>y</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>← skip →</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21
Algorithm in Gusfield Text

\[k \leftarrow |P| \]

while \(k \leq |T| \)

\[i \leftarrow |P| \]

\[h \leftarrow k \]

while \(i > 0 \) and \(P(i) = T(h) \)

\[i \leftarrow i - 1 \]

\[h \leftarrow h - 1 \]

if \(i = 0 \)

found \(P \) ending at \(k \)

\[k \leftarrow k + |P| - l'(2) \]

else

\[k \leftarrow k + \max(\text{bad-char, good-suffix}) \]

22
More to keep track of

\[k \leftarrow |P| \]

while \(k \leq |T| \)

\[i \leftarrow |P| \]

\[h \leftarrow k \]

while \(i > 0 \) and \(P(i) = T(h) \)

\[i \leftarrow i - 1 \]

\[h \leftarrow h - 1 \] ← may need to skip over some

if \(i = 0 \)

found \(P \) ending at \(k \)

\[k \leftarrow k + |P| - l'(2) \] ← anything to skip over?

else

\[k \leftarrow k + \max(\text{bad-char, good-suffix}) \] ← anything to skip over?