Agenda

- Language modeling overview
- N-gram (Markov) models and smoothing (regularization)
- Specific smoothing methods: Good-Turing; Katz; Jelinek Mercer; Absolute discounting; Witten Bell; Kneser-Ney
- Weighted finite-state automata encoding
- Whole sentence language modeling
 - Log linear models
 - Syntactic language models
 - Neural net models
Language models for ASR

- For a vocabulary Σ, we want to find the word string $w \in \Sigma^*$ that is the best transcription for acoustic signal A

$$\hat{w} = \arg\max_{w \in \Sigma^*} P(w | A)$$

Through the use of Bayes rule, this is the same as

$$\hat{w} = \arg\max_{w \in \Sigma^*} P(A | w) P(w)$$

- The $P(w)$ part (the language model) assigns probabilities to strings of words $w = w_1 \ldots w_k$ for some k

- Can be thought of as a sort of prior over strings
 - Choose between acoustically confusable strings
Other LM applications

- Other noisy channel formulations
 - Machine translation (LM prior over possible translations)
 - Optical character recognition (prior over character sequences)

- Other uses for language models
 - LM-derived scores for information retrieval
 - Language models for word disambiguation in text entry (T9)
 - For coding of text, e.g., arithmetic coding (as in Dasher)

- In all these cases:
 - ‘good’ exemplars of language vs. ‘bad’ exemplars
Some key concepts in language modeling

- Open vs. closed vocabulary
 - Most natural language applications are closed vocabulary

- Simple multinomial models versus more complex models
 - e.g., continuous space neural networks

- Complexity of features used in models, scalability
 - Finite state models; latent variables; non-local features

- Intrinsic vs. extrinsic evaluation of language model quality

- Generative vs. discriminative models
 - Local vs. global normalization
Language models

- Joint probability is product of conditionals (chain rule)
 \[
P(w_1 \ldots w_k) = P(w_1) \prod_{i=2}^{k} P(w_i | w_1 \ldots w_{i-1})
 \]
 - May choose to keep more or less information in \(h_i \)

- Call previous words “history”, i.e., \(h_i = w_1 \ldots w_{i-1} \)
 - May choose to keep more or less information in \(h_i \)

- Example: *John was very happy*

 \[
P(\text{John was very happy}) = P(\text{John} | <s>) \ast P(\text{was} | \text{John}) \ast \]
 \[
 P(\text{very} | \text{John was}) \ast \]
 \[
P(\text{happy} | \text{John was very})
 \]
Cross Entropy and perplexity (intrinsic quality)

| Probability | $P(w_1 \ldots w_N) = \prod_{i=1}^{N} P(w_i|h_i)$ |
|---------------------|--|
| Neg.Log Prob. | $- \log P(w_1 \ldots w_N) = - \sum_{i=1}^{N} \log P(w_i|h_i)$ |
| Cross Entropy | $H_P(w_1 \ldots w_N) = - \frac{1}{N} \sum_{i=1}^{N} \log P(w_i|h_i)$ |
| Perplexity | $PPX_P(w_1 \ldots w_N) = \exp(H_P(w_1 \ldots w_N))$ |

$$= \left(\prod_{i=1}^{N} P(w_i|h_i)\right)^{-\frac{1}{N}}$$

- With very large models, correlation between intrinsic and extrinsic improvements is often pretty good
Markov assumption

- Suppose string has 15 words. Must estimate $P(w_{15} \mid w_1 \ldots w_{14})$
 - too many parameters (hard to estimate; store; access)
- Markov assumption: given the previous k words, the current word is conditionally independent of words further away
- n-gram model: Markov assumption of order $n - 1$

<table>
<thead>
<tr>
<th>Model</th>
<th>Order</th>
<th>$P(w_1 \ldots w_k) =$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unigram</td>
<td>0</td>
<td>$P(w_1) \prod_{i=2}^{k} P(w_i)$</td>
</tr>
<tr>
<td>Bigram</td>
<td>1</td>
<td>$P(w_1) \prod_{i=2}^{k} P(w_i \mid w_{i-1})$</td>
</tr>
<tr>
<td>Trigram</td>
<td>2</td>
<td>$P(w_1) \prod_{i=2}^{k} P(w_i \mid w_{i-2}w_{i-1})$</td>
</tr>
<tr>
<td>4-gram</td>
<td>3</td>
<td>$P(w_1) \prod_{i=2}^{k} P(w_i \mid w_{i-3}w_{i-2}w_{i-1})$</td>
</tr>
</tbody>
</table>
N-gram models

• De-facto standard language model approach
 – Relatively compact: only store observed n-grams
 – Relatively effective: difficult to improve on performance
 – Scales well: performance improves with more observations
 – Simple “stupid” training methods yield high performing models

• Recent advances in leveraging large amounts of data
 – More data yields robust estimates for larger Markov orders
 – Distributed methods using simplified smoothing
 – Lossy hash-based methods yield space savings
Smoothing (regularization)

- Let h_i be the conditioning history for w_i
- Probabilities usually estimated via maximum likelihood

$$\hat{P}(w_i \mid h_i) = \frac{C(h_i w_i)}{C(h_i)}$$

where $C(h)$ is the frequency of h in a large corpus

- Unobserved n-grams get zero probability!
- To avoid zero probs, we smooth, i.e. reserve probability mass for unobserved n-grams
- Many techniques; most share same WFSA structure
Smoothing (cont.)

• Let $\tilde{P}(w \mid h)$ be some estimate that reserves probability mass for unobserved events – unlike $\hat{P}(w \mid h)$

 – many techniques for this (will cover in next few slides)

• For an n-gram history $h = wh'$, where $h \in \Sigma^k$ for some $k \geq 1$
 call h' the backoff history

• Then most n-gram smoothing is encoded as

$$P(w \mid h) = \begin{cases}
\tilde{P}(w \mid h) & \text{if } c(hw) > 0 \\
\alpha_h P(w \mid h') & \text{otherwise}
\end{cases}$$

where α_h ensures normalization: $\sum_{w \in V} P(w \mid h) = 1$
Well-known smoothing methods

- Katz backoff
 - Based on Good-Turing estimation (leave one out rationale)
- Jelinek-Mercer (deleted interpolation)
 - Mixture of models, can be estimated with EM
- Absolute discounting
 - Steals counts from n-grams to allocate to unobserved
- Witten-Bell
 - Adds counts to each history based on number of n-grams
- Kneser-Ney
 - Modifies lower-order distributions of absolute discounting models
Good-Turing

- Let $w = w_1w_2 \ldots w_N$ be a random sample of size N
- Based on this sample, estimate word probabilities
 (i.e. if I sample one more word)
- Maximum likelihood: $\hat{P}(w|w) = \frac{r}{N}$
 where $r = c(w, w)$ is the count of w in w
- Good-Turing:
 $$\tilde{P}_{gt}(w|w) = \frac{r + 1}{N} \frac{n_{r+1}}{n_r}$$ (1)
 where n_r is the number of distinct words that have count r in a sample
Good-Turing - intuition

- All items with the same count should have the same probability
- If w_{N+1} has count r in w, it now has count $r + 1$
- We should expect something from the set n_r about as frequently as set n_{r+1} was observed.
- $(r + 1)n_{r+1}$ is the total count of words that occur $r + 1$ times in w, i.e. the total count mass
- $\frac{(r+1)n_{r+1}}{n_r}$ spreads the counts around evenly among the set n_r
- $\frac{r+1}{N} \frac{n_{r+1}}{n_r}$ normalizes the probabilities
Simple histogram plot from small text sample

Counts

Total count mass

Tokens

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

0
200
400
600
800
1000
1200

0
2
4
6
8
10
12
14
16
18
20

14
Katz backoff

- Extends Good-Turing to higher order n-grams
 - and limits the count bins where discounting applies
- For $r > 0$, $\tilde{P}_{katz}(w_i|h) = \frac{rd_r}{C(h)}$
- If $r > k$ (typically $k = 5$), $d_r = 1$
- For $r \leq k$, $d_r \approx \frac{r+1}{r} \frac{n_{r+1}}{n_r}$
- Need to adjust for the fact that we stop at k:
 \[
 d_r = \frac{r+1}{r} \frac{n_{r+1}}{n_r} \frac{(k+1)n_{k+1}}{n_1} \left(\frac{1}{1 - \frac{(k+1)n_{k+1}}{n_1}} \right)
 \]

 if $k = 5$, then $d_r = \frac{r+1}{r} \frac{n_{r+1}}{n_r} \frac{6n_6}{n_1} \left(\frac{1}{1 - \frac{6n_6}{n_1}} \right)$
Katz backoff

• Assumption is that \(\frac{r+1}{r} \frac{n_{r+1}}{n_r} < 1 \) for \(r \leq k \)

unigrams in a million words of Wall St. Journal:

<table>
<thead>
<tr>
<th>(r)</th>
<th>(n_r)</th>
<th>(r n_r)</th>
<th>(\frac{(r+1)n_{r+1}}{r n_r})</th>
<th>(d_r)</th>
<th>(r d_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20621</td>
<td>20621</td>
<td>0.6233</td>
<td>0.4369</td>
<td>0.4369</td>
</tr>
<tr>
<td>2</td>
<td>6427</td>
<td>12854</td>
<td>0.7620</td>
<td>0.6442</td>
<td>1.2884</td>
</tr>
<tr>
<td>3</td>
<td>3265</td>
<td>9795</td>
<td>0.8445</td>
<td>0.7675</td>
<td>2.3026</td>
</tr>
<tr>
<td>4</td>
<td>2068</td>
<td>8272</td>
<td>0.8928</td>
<td>0.8397</td>
<td>3.3587</td>
</tr>
<tr>
<td>5</td>
<td>1477</td>
<td>7385</td>
<td>0.9246</td>
<td>0.8872</td>
<td>4.4362</td>
</tr>
<tr>
<td>6</td>
<td>1138</td>
<td>6828</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

• Assumption holds for unigrams in corpus until \(r = 10 \)
Jelinek Mercer (Deleted Interpolation)

- \(\tilde{P}_{jm}(w_i|h) = \lambda_h \tilde{P}(w_i|h) + (1 - \lambda_h)\tilde{P}_{jm}(w_i|h') \)

- Mixing parameter \(\lambda_h \) is typically estimated using EM on held out data (requires parameter tying across states)

- Note that our standard formulation:
 \[
 P(w \mid h) = \begin{cases}
 \tilde{P}(w \mid h) & \text{if } c(hw) > 0 \\
 \alpha_h P(w \mid h') & \text{otherwise}
 \end{cases}
 \]

 holds in this case, with \(\alpha_h = 1 - \lambda_h \)
 (will demonstrate explicitly later)
Absolute discounting

- Set $\bar{C}(hw_i) = \max(C(hw_i) - d, 0)$ for some d

- $\tilde{P}_{abs}(w_i|h) = \frac{\bar{C}(hw_i)}{C(h)} + (1 - \lambda_h)\tilde{P}_{abs}(w_i|h')$

 where $\lambda_h = \frac{\sum w_i \bar{C}(hw_i)}{\sum w_i C(hw_i)}$

- One proposed rule of thumb: $d = \frac{n_1}{n_1 + 2n_2}$

- From WSJ unigrams, this would be 0.6160

 1 2 3 4 5
 Katz: 0.4369 1.2884 2.3026 3.3587 4.4362
 Abs: 0.384 1.384 2.384 3.384 4.384
Witten Bell

• Mixing approach like deleted interpolation

\[\lambda_h = \frac{C(h)}{C(h) + k|\{w:C(hw)>0\}|} \]

• i.e., add \(k \) times # of n-grams following history to denominator
 – \(k \) is a metaparameter that is typically =1 (e.g., for your HW)

• Intuition: smoothes heavily if \(C(h) \) is low or many low \(C(hw_i) \)

• Less smoothing if high counts and few alternatives
 – e.g. in a corpus about cars, if \textbf{Rolls} occurs frequently, it is likely to occur with \textbf{Royce}.

19
Kneser-Ney estimation

- This technique modifies only lower order distributions
 - Improve their utility within smoothing
- Intuition: **Royce** may occur frequently in a corpus but it is unlikely to follow anything but **Rolls**
 - Hence unigram probability should be small within bigram model
- A variant of absolute discounting
 - Highest order n-gram probs left the same

\[\tilde{P}_{abs}(w_i|h) = \frac{\tilde{C}(hw_i)}{C(h)} + (1 - \lambda_h)\tilde{P}_{kn}(w_i|h') \]

where \(P_{kn}(w_i|h') \propto |\{w_j : C(w_jh'w_i) > 0\}| \)
Smoothed n-gram models: unified framework

- All of these approaches are instances of
 \[
 P(w \mid h) = \begin{cases}
 \tilde{P}(w \mid h) & \text{if } c(hw) > 0 \\
 \alpha_h P(w \mid h') & \text{otherwise}
 \end{cases}
 \]

- To make things normalize
 \[
 \alpha_h = \frac{1 - \sum_{w_i: C(hw_i) > 0} \tilde{P}(w_i \mid h)}{1 - \sum_{w_i: C(hw_i) > 0} P(w_i \mid h')}
 \]

- In mixture approaches, \(\alpha_h = 1 - \lambda_h \)
Mixture α_h

- e.g. Jelinek Mercer:

$$\alpha_h = \frac{1 - \sum_{w_i:C(hw_i)>0} \tilde{P}(w_i|h)}{1 - \sum_{w_i:C(hw_i)>0} P(w_i|h')}$$

$$= \frac{1 - \sum_{w_i:C(hw_i)>0} \lambda_h \tilde{P}(w_i|h) + (1 - \lambda_h) \tilde{P}_{jm}(w_i|h')}{1 - \sum_{w_i:C(hw_i)>0} \tilde{P}_{jm}(w_i|h')}$$

$$= \frac{1 - \lambda_h \sum_{w_i:C(hw_i)>0} \tilde{P}(w_i|h) - (1 - \lambda_h) \sum_{w_i:C(hw_i)>0} \tilde{P}_{jm}(w_i|h')}{1 - \sum_{w_i:C(hw_i)>0} \tilde{P}_{jm}(w_i|h')}$$

$$= 1 - \lambda_h - (1 - \lambda_h) \sum_{w_i:C(hw_i)>0} \tilde{P}_{jm}(w_i|h')$$

$$= \frac{(1 - \lambda_h)(1 - \sum_{w_i:C(hw_i)>0} \tilde{P}_{jm}(w_i|h'))}{1 - \sum_{w_i:C(hw_i)>0} \tilde{P}_{jm}(w_i|h')}$$

$$= 1 - \lambda_h$$
Encoding LMs as WFA

- N-gram models are finite-state and can be represented compactly via weighted finite-state automata (WFA)
- Effective encoding requires some kind of a back-off mechanism
 - Encoded as a “failure” transition
 - Approximated with epsilon transitions
- Encoded as WFA, they can compose with other models off-line
 - Graph optimizations yield more effective search
- Needs to accept all strings from Σ^*
- Important to pay attention to start and end of string
Running example

<table>
<thead>
<tr>
<th>corpus.txt</th>
<th>wl</th>
</tr>
</thead>
<tbody>
<tr>
<td>hello</td>
<td>ϵ 0</td>
</tr>
<tr>
<td>bye</td>
<td>hello 1</td>
</tr>
<tr>
<td>hello</td>
<td>bye 2</td>
</tr>
<tr>
<td>bye bye</td>
<td></td>
</tr>
</tbody>
</table>
Unigram WFSA

bye/0.510
hello/0.916
Running example

<table>
<thead>
<tr>
<th>corpus.txt</th>
<th>(wl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<s>) hello (</s>)</td>
<td>(\epsilon) 0</td>
</tr>
<tr>
<td>(<s>) bye (</s>)</td>
<td>hello 1</td>
</tr>
<tr>
<td>(<s>) hello (</s>)</td>
<td>bye 2</td>
</tr>
<tr>
<td>(<s>) bye bye (</s>)</td>
<td>(<s>) 3</td>
</tr>
<tr>
<td>(</s>) 4</td>
<td></td>
</tr>
</tbody>
</table>
state 1 encodes history: <s>
state 2 encodes history: bye
state 3 encodes history:
state 4 encodes history: hello
state 5 encodes history: </s>
Trigram WFSA
Using WFSA language models

- Encode input strings as WFSA
 - For example, encode a single string “hello bye bye” as a linear automaton

 ![Circular automaton diagram]

 - Or a word lattice encodes many strings on different paths
 - Note explicit </s> in language model examples, versus implicit end-of-string in linear automaton above

- Compose (intersect) with the language model to get score
Some intuitions on Kneser-Ney

• Build a language model automaton, randomly generate text

• Suppose we have a bigram model
 – Want randomly generated unigrams to occur about as frequently as they were observed in the corpus we trained on

• If we use relative frequency for unigram distribution, Royce will be generated too frequently in random car corpus
 – Generated with high frequency following Rolls
 – Unigram prob. high, hence also generated in other contexts

• Kneser-Ney constrains lower order models so that lower-order n-grams are not overgenerated in random corpus
Further notes on Kneser-Ney

• Modifies lower orders to match observed marginal distributions
 – e.g., expected frequency n-grams match observed frequencies
 – Similar methods are used to train maximum entropy models
 – This generally improves models (Goodman, 2001)

• Pruning of parameters in KN model generally causes problems
 – For various reasons, resulting pruned model is typically bad
 – Different methods for dealing with this (including general method from Roark et al., 2013, which is another talk)
VERY large models

- Training on petabyte scale resources results in many n-grams
- Distributed methods of training and access makes this feasible
- Typically, more data continues to improve models
- Traditional smoothing methods tricky using Map/Reduce
- Very simple, unnormalized variant (“Stupid Backoff”) works well
 - Relative frequency for found n-grams; fixed α for rest
- Hash-based methods (Bloom and Bloomier filters) also used
 - Small number of false positives based on hash collisions
 - Mainly used in MT: “lookup table” rather than WFSA
Log linear modeling

- A general stochastic modeling approach that does not assume a particular WFSA structure
 - WFSA structure can be imposed for a particular feature set, e.g., n-grams
- Flexibility of modeling allows for many overlapping features
 - e.g., use unigram, bigram and trigram simultaneously
 - or use POS-tags or morphologically-derived features
- Generative or discriminative training can be used
- Commonly used models for other sequence processing problems
Log linear modeling

- Define a d-dimensional vector of features ϕ

e.g. $\phi_{1000}(w_{i-2}w_{i-1}w_i) = 1$ if w_{i-1} is to and w_i is the, 0 otherwise

- Estimate a d-dimensional parameter vector α

- Then

$$P(w_i|w_{i-1}w_{i-2}) = \frac{e^{(\sum_{s=1}^{d} \alpha_s \phi_s(w_{i-2}w_{i-1}w_i)}}{Z(w_{i-1}w_{i-2})}$$

Where

$$Z(w_{i-1}w_{i-2}) = \sum_{w'} e^{(\sum_{s=1}^{d} \alpha_s \phi_s(w_{i-2}w_{i-1}w'))}$$

- We can just consider log P:

$$\log P(w_i|w_{i-1}w_{i-2}) = \sum_{s=1}^{d} \alpha_s \phi_s(w_{i-2}w_{i-1}w_i) - \log Z(w_{i-2}w_{i-2})$$
Global discriminative models

- Instead of normalizing locally (over next word) can normalize globally (over whole strings)

- Whole sentence models can be trained as follows
 - Generate recognizer output from training data
 - Move parameters to improve score of reference transcript

- Under such a scenario, global normalization tractable
 - Some methods don’t bother to normalize, e.g., perceptron

- Often used in a reranking/rescoring scenario
 - Though with certain feature sets, can incorporate in first-pass
Other global models

- Syntactic language models
 - Strings scored via syntactic parsing or tagging
 - Scores can be derived from stochastic grammar itself; or by using features derived from the parse structures

- Recurrent neural networks
 - Outputs from earlier time fed as input at current time
 - Influence from arbitrarily far back in string (not finite state)

- Very large perplexity gains achievable from such methods
 - Stuck doing n-best reranking, hard to move error rates
Language modeling toolkits

- SRI language modeling toolkit (SRILM):
 http://www.speech.sri.com/projects/srilm/

- KenLM
 kheafield.com/code/kenlm/

- OpenGrm n-gram library:
 http://www.opengrm.org