Vector Quantization, Gaussian Mixtures, and EM

Geoffrey Zweig
April 23, 2009
What is VQ?

- Representation of data in terms of codewords
- A data point is represented as the index of the nearest codeword
- In 2-D you end up storing one number, not two

Image from Wikipedia
Why is it Useful?

- Data compression
- Data transmission
- Discrete representation of data is convenient to work with:
 - Enumerated probability distributions over single events
 - Language models and discrete HMMs for sequences
K-Means Algorithm

- Common form of vector quantization
- Creates K centers

Initialization:
- Choose K distinct points at random for the first centers

Repeat:
- Assign each data point to the nearest center
- Reset each center to the mean of the points assigned to it

Stopping criteria can be:
- an absolute number of iterations
- or threshold on sum of all distances between centers and assigned points (total distortion)
Example of K-Means Algorithm

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
VQ Convergence

- Consider the total “distortion”
- Sum of distances between points and their assigned centers

\[\sum_{i} (x_i - c(x_i))^2 \]
Step 1: Assign each point to the nearest center

Defines $C(x_i)$ explicitly to minimize $(x_i - c(x_i))^2$

Since the contribution of each point individually to the distortion goes down, the total distortion must decrease
Step 2: Re-estimate each center as the mean of its assigned points

Consider what happens to one center \(c \)

\[
\frac{d}{dc} \sum_{i=1}^{N} (x_i - c)^2 = 0
\]

\[
\sum_{i=1}^{N} \frac{d}{dc} (x_i - c)^2 = 0
\]

Distortion contributed by each \(c \) individually is minimized

\[
\sum_{i=1}^{N} 2(x_i - c) = 0
\]

\[
c = \frac{1}{N} \sum_{i=1}^{N} x_i
\]

\(\Rightarrow \) The total distortion is minimized
LBG

- Iteratively increases the number of codewords – 2, 4, 8, 16...
- Can be used to induce a tree structured quantizer

Initialize:
- Make one codeword in the center of everything
- Assign all the data to it

Repeat:
- Split each current codeword into two slightly different variants
- Do k-means with the current codewords
LBG Example

• http://www.data-compression.com/vq.shtml
VQ: Some Things to be Aware Of
Speeding Up VQ with a Tree

Recursively partition the data as the tree is built

Only follow one branch when finding a codeword after the tree is built
Gaussian Mixtures & EM
Gaussian Mixtures

- Codebook centers are gaussians
- An example may be assigned partially to a center
- A generative model
- Implies a data likelihood
Gaussian Refresher

\[N(x; \mu, \Sigma) = \pi^{-d/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2} (x-\mu)' \Sigma^{-1} (x-\mu) \right) \]

- Parameterized by mean and covariance matrix
- Integral over all space is 1 (probability density function)
- Diagonal covariance matrix most common in speech
 - \(O(d) \) parameters rather than \(O(d^2) \)
Maximum Likelihood Parameter Estimation (MLE) – Data Likelihood

\[
\log p_n(x \mid \Phi) = \sum_{k=1}^{n} \log p(x_k \mid \Phi) \\
= \sum_{k=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{(x_k - \mu)^2}{2\sigma^2} \right] \right) \\
= \frac{-n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{k=1}^{n} (x_k - \mu)^2
\]

(n 1-dimensional points)

From Acero et al. Chapter 3
MLE – Take the Derivative

\[\frac{\partial}{\partial \mu} \log p_n(x | \Phi) = \sum_{k=1}^{n} \frac{1}{\sigma^2} (x_k - \mu) \]

\[\frac{\partial}{\partial \sigma^2} \log p_n(x | \Phi) = -\frac{n}{2\sigma^2} + \sum_{k=1}^{n} \frac{(x_k - \mu)^2}{2\sigma^4} \]

Set it equal to 0 and solve

\[\mu_{MLE} = \frac{1}{n} \sum_{k=1}^{n} x_k = E(x) \]

\[\sigma^2_{MLE} = \frac{1}{n} \sum_{k=1}^{n} (x_k - \mu_{MLE})^2 = E[(x - \mu_{MLE})^2] \]

From Acero et al. Chapter 3
Why Do We Care About Gaussians

- A single gaussian is highly restricted
- But with enough gaussians you can model any probability distribution
- => A parametric modeling approach that becomes non-parametric
- And they are well understood in terms of
 - Parameter estimation
 - Computational complexity (and speedups)
 - Discriminative training
 - Adaptation to new data sets
K-Means for GMMs

- Same process as for VQ, but “soft” assignment
- Repeat:
 - Assign each data point to each gaussian with some weight
 - Re-estimate the gaussian centers using the weighted data assigned to each
MLE with GMMs

Where we are going:
- Parameter estimation will be as before
- But the x_ks below will be weighted by “degree of membership”
- And n will be the sum of the weights

$$\mu_{MLE} = \frac{1}{n} \sum_{k=1}^{n} x_k = E(x)$$

$$\sigma^2_{MLE} = \frac{1}{n} \sum_{k=1}^{n} (x_k - \mu_{MLE})^2 = E[(x - \mu_{MLE})^2]$$

From Acero et al. Chapter 3
Convergence of EM Process

Analysis will follow Sean Borman, “The Expectation Maximization Algorithm
A Short Tutorial”
See also:
* Jeff Bilmes “A Gentle Tutorial on the EM Algorithm” and
* Acero et al. Chapter 4.

The data likelihood will go up at each iteration,
analogous to distortion going down

\[
L(\theta) = \ln \mathcal{P}(X|\theta).
\]

\[
\mathcal{P}(X|\theta) = \sum_z \mathcal{P}(X|z, \theta) \mathcal{P}(z|\theta)
\]

Hidden variables – what gaussian a data point comes from

Jensen’s Inequality

$$\ln \sum_{i=1}^{n} \lambda_i x_i \geq \sum_{i=1}^{n} \lambda_i \ln(x_i).$$

All λs must be non-negative and sum to 1.
Change in Likelihood

\[
L(\theta) - L(\theta_n) = \ln \left(\sum_z \mathcal{P}(X|z, \theta) \mathcal{P}(z|\theta) \right) - \ln \mathcal{P}(X|\theta_n)
\]

\[
= \ln \left(\sum_z \mathcal{P}(X|z, \theta) \mathcal{P}(z|\theta) \cdot \frac{\mathcal{P}(z|X, \theta_n)}{\mathcal{P}(z|X, \theta_n)} \right) - \ln \mathcal{P}(X|\theta_n)
\]

\[
= \ln \left(\sum_z \mathcal{P}(z|X, \theta_n) \frac{\mathcal{P}(X|z, \theta) \mathcal{P}(z|\theta)}{\mathcal{P}(z|X, \theta_n)} \right) - \ln \mathcal{P}(X|\theta_n)
\]

\[
\geq \sum_z \mathcal{P}(z|X, \theta_n) \ln \left(\frac{\mathcal{P}(X|z, \theta) \mathcal{P}(z|\theta)}{\mathcal{P}(z|X, \theta_n)} \right) - \ln \mathcal{P}(X|\theta_n) \quad (12)
\]

\[
= \sum_z \mathcal{P}(z|X, \theta_n) \ln \left(\frac{\mathcal{P}(X|z, \theta) \mathcal{P}(z|\theta)}{\mathcal{P}(z|X, \theta_n) \mathcal{P}(X|\theta_n)} \right) \quad (13)
\]

\[
\Delta \equiv \Delta(\theta|\theta_n). \quad (14)
\]

In going from Equation (12) to Equation (13) we made use of the fact that \(\sum_z \mathcal{P}(z|X, \theta_n) = 1 \) so that \(\ln \mathcal{P}(X|\theta_n) = \sum_z \mathcal{P}(z|X, \theta_n) \ln \mathcal{P}(X|\theta_n) \) which allows the term \(\ln \mathcal{P}(X|\theta_n) \) to be brought into the summation.
Lower Bound on New Likelihood

\[L(\theta) \geq L(\theta_n) + \Delta(\theta|\theta_n) \Delta l(\theta|\theta_n) \]

We’ll work by increasing this lower bound. But will increasing a lower bound increase what we want?
Lower Bound Evaluated at Current Parameters is the Likelihood Itself!

\[
l(\theta_n|\theta_n) = L(\theta_n) + \Delta(\theta_n|\theta_n)
\]
\[
= L(\theta_n) + \sum_z \mathcal{P}(z|X, \theta_n) \ln \frac{\mathcal{P}(X|z, \theta_n)\mathcal{P}(z|\theta_n)}{\mathcal{P}(z|X, \theta_n)\mathcal{P}(X|\theta_n)}
\]
\[
= L(\theta_n) + \sum_z \mathcal{P}(z|X, \theta_n) \ln \frac{\mathcal{P}(X, z|\theta_n)}{\mathcal{P}(X, z|\theta_n)}
\]
\[
= L(\theta_n) + \sum_z \mathcal{P}(z|X, \theta_n) \ln 1
\]
\[
= L(\theta_n),
\]
The Real Picture

Maximizing the Lower Bound on Likelihood

\[\theta_{n+1} = \arg \max_{\theta} \{ l(\theta | \theta_n) \} \]

\[= \arg \max_{\theta} \left\{ L(\theta_n) + \sum_z \mathcal{P}(z | X, \theta_n) \ln \frac{\mathcal{P}(X | z, \theta) \mathcal{P}(z | \theta)}{\mathcal{P}(X | \theta_n) \mathcal{P}(z | X, \theta_n)} \right\} \]

Now drop terms which are constant w.r.t. \(\theta \)

\[= \arg \max_{\theta} \left\{ \sum_z \mathcal{P}(z | X, \theta_n) \ln \mathcal{P}(X | z, \theta) \mathcal{P}(z | \theta) \right\} \]

\[= \arg \max_{\theta} \left\{ \sum_z \mathcal{P}(z | X, \theta_n) \ln \frac{\mathcal{P}(X, z, \theta) \mathcal{P}(z, \theta)}{\mathcal{P}(z, \theta)} \right\} \]

\[= \arg \max_{\theta} \left\{ \mathbb{E}_{Z | X, \theta_n} \{ \ln \mathcal{P}(X, z | \theta) \} \right\} \]

What This Tells Us

- Compute the expected values of the hidden variables
- Assume the hidden variables are seen with these probabilities
- Compute a new set of parameters θ to optimize the complete data likelihood
 - The Q function is a function of θ
 - It is maximized wrt θ
- This is guaranteed to increase the likelihood
Application to GMMs

One data point, K gaussians

\[p(y | \Phi) = \sum_{k=1}^{K} c_k p_k(y | \Phi_k) = \sum_{k=1}^{K} c_k N_k(y | \mu_k, \Sigma_k) \]

Posterior probability (count) of gaussian k wrt data point i

\[\gamma^i_k = \frac{c_k p_k(y_i | \Phi_k)}{P(y_i | \Phi)} \]

Total number of points assigned to Gaussian k

\[\gamma_k = \sum_{i=1}^{N} \gamma^i_k = \sum_{i=1}^{N} \frac{c_k p_k(y_i | \Phi_k)}{P(y_i | \Phi)} \]

From Acero et al. Chapter 4
Application to GMMs (2)

New prior for gaussian k

\[
\hat{\gamma}_k = \frac{\gamma_k}{\frac{1}{K}\sum_{k=1}^{K} \gamma_k} = \frac{\gamma_k}{N}
\]

Mean is posterior-weighted average of the points

\[
\hat{\mu}_k = \frac{\sum_{i=1}^{N} \gamma_k^i y_i}{\sum_{i=1}^{N} \gamma_k^i} = \frac{\sum_{i=1}^{N} \frac{c_k p_k (y_i | \Phi_k)}{P(y_i | \Phi)} y_i}{\sum_{i=1}^{N} \frac{c_k p_k (y_i | \Phi_k)}{P(y_i | \Phi)}}
\]

Variance also a weighted sum

\[
\hat{\Sigma}_k = \frac{\sum_{i=1}^{N} \gamma_k^i (y_i - \mu_k)(y_i - \mu_k)^t}{\sum_{i=1}^{N} \gamma_k^i} = \frac{\sum_{i=1}^{N} \frac{c_k p_k (y_i | \Phi_k)}{P(y_i | \Phi)} (y_i - \mu_k)(y_i - \mu_k)^t}{\sum_{i=1}^{N} \frac{c_k p_k (y_i | \Phi_k)}{P(y_i | \Phi)}}
\]

From Acero et al. Chapter 4
Break

Then:

Advanced topics in GMMs
Fast Gaussian Computation

- Competition-grade systems may have close to 1M gaussians
- Typically features are extracted 100 times a second
- Evaluating and accumulating each dimension takes something like 2 additions and 2 multiplies
- 39 dimensions
- 100 million gaussian evaluations per second amounts to something like 15 billion ops/sec
- This is a problem for real-time or near real-time systems!
Some Options for Speeding Things Up

- **On-Demand Computation**
 - Only evaluate gaussians required by the search strategy
 - But: introduces linkage between search and gaussian computation, requires caching, and is complex

- **Dimension-wise pruning**
 - Likelihood computations involves sum of \((x-u)/\sigma)^2\) across dimensions – big number means low likelihood
 - Stop when you know the likelihood will be bad
 - But: limited benefit in practice

- **Hierarchical evaluation**
- **Cache optimization**
Hierarchical Evaluation

The gaussians we need to evaluate

Cluster them into a few high-level gaussians (e.g. 2000)

1. Evaluate the top level gaussians against a frame
2. Select the top N (e.g. 100)
3. Evaluate the “real” gaussians assigned to these top N
4. Assume everything else is zero
5. 20x speedup!
How to Cluster the Gaussians?

- K-Means of course!
- Some distance metrics:
 1. Euclidian distance between means
 2. KL-Divergence between a gaussian and the centroid
Cache Optimization

- For each frame
 - For each gaussian
 - Do an evaluation

- For each gaussian
 - For each frame
 - Do an evaluation

Gaussians have means *and* variances
A frame takes ½ the memory!
½ as many cache misses
Maybe twice the speed
Applicable to hierarchical evaluation too
Cache Optimization (2)

Re-order for locality
Low Memory Gaussian Computation

• Think circa 1990
• Dragon Dictate and IBM ViaVoice just introduced
• Think Intel 486
• 20MHz, 16MB RAM
• Memory was an issue!

• What to do?
Low Memory Gaussians (2)

- Break gaussians into bands
 - Each e.g. 2 dimensions
- Cluster all the samples in each band
 - Analogous to clustering the gaussians in the first place
- Diagonal covariance gaussians decompose into sum of bands
- Represent a gaussian as the sum of its bands

Gaussian quantized as one codeword from each band

Codebooks for each band
Consider 1-Dimensional Quantization

The quantized mean/variance of the d-th dimension of the j-th gaussian is:

\[\mu_{d}^{q(j)}, \sigma_{d}^{q(j)} \]

\[\log N^{j}(x; \mu, \Sigma) \propto D \log 2\pi + \sum_{d} \log \sigma_{d}^{j} + \sum_{d} (x_{d} - \mu_{d}^{j})^{2} (\sigma_{d}^{j})^{-2} \]

\[\approx D \log 2\pi + \sum_{d} \log \sigma_{d}^{q(j)} + \sum_{d} (x_{d} - \mu_{d}^{q(j)})^{2} (\sigma_{d}^{q(j)})^{-2} \]

Compute: \[\log \sigma_{d}^{q(j)} + (x_{d} - \mu_{d}^{q(j)})^{2} (\sigma_{d}^{q(j)})^{-2} \]

Once for each codeword and re-use across gaussians
Memory Requirements

- Say 40 dimensions and bands are 2-dimensions
- Quantize to 256 codewords per band
- Each gaussian is now represented 20 bytes
- Used to be 40*2*4 = 320 (assuming floats)
- Factor of 16 reduction
Compute requirements

- Evaluate $256 \times 20 = 5120$ 2-dimensional gaussians
- Add 20 numbers to get the score for a “real” gaussian
- Repeatedly access the 5120 atomic numbers
 - Good for cache!
Further Speedups – Two References

 - Many gaussians use common sets of codewords
 - Redundant computation
 - Can be optimized with compiler technology for evaluating common subexpressions once only
 - Numerous tricks for efficient organization of complete recognizer
Full Covariance Matrices

\[N(\xi; \mu, \Sigma) = \mathcal{C}(\pi)^{\frac{d}{2}} |\Sigma|^{1/2} \exp \left(-\frac{1}{2} (x-\mu)' \Sigma^{-1} (x-\mu) \right) \]

- When \(\Sigma^{-1} \) is not diagonal
 - Number of parameters is \(O(D^2) \) not \(O(D) \)
 - Need more data to estimate the parameters
 - Evaluation is much slower
 - Band quantization doesn’t work
 - Adaptation methods are more complex
- Nevertheless, people sometimes see improvements
 - EMLLT is an interesting compromise
Inverse covariance matrix is sum of outer products of basis vectors
Can also think of as sum of basis matrices
Basis vectors shared across all gaussians
 • Potentially many fewer covariance parameters – just D per gaussian
 • Plus the pool of basis vectors

See Olsen & Gopinath, “Modeling Inverse Covariance Matrices by Basis Expansion”
Some EMLLT Results

d is the vector dimensionality
From Olsen & Gopinath,
“Modeling Inverse Covariance Matrices by Basis Expansion”

<table>
<thead>
<tr>
<th></th>
<th>Diagonal</th>
<th>MLLT</th>
<th>EMLLT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n\text{Gauss}</td>
<td>WER</td>
<td>n\text{Gauss}</td>
</tr>
<tr>
<td>10253</td>
<td>3.14%</td>
<td>10253</td>
<td>2.84%</td>
</tr>
<tr>
<td>17028</td>
<td>3.08%</td>
<td>17028</td>
<td>2.74%</td>
</tr>
<tr>
<td>26460</td>
<td>3.01%</td>
<td>26460</td>
<td>2.58%</td>
</tr>
<tr>
<td>46500</td>
<td>2.84%</td>
<td>46500</td>
<td>2.50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adaptation

Old data modeled by some gaussians

New data

How should we update our estimate of what the gaussians are?
Option 1: Replace the old data

Old data modeled by
some gaussians

New data,
New gaussians
Option 2: Add the Data (MAP Adaptation)

Old data modeled by some gaussians

New data

Re-estimate gaussians, combining old and new data, possibly with a weighting factor

See, e.g. Gauvain & Lee, Maximum a Posteriori Estimation for Multivariate Gaussian Mixture Observations of Markov Chains
Option 3: Transform the Means

\[\mu' = A(1 \mu^T)^T \]

- New mean is linear transformation of old
- An offset is added to the old mean as well
- Transformation matrix chosen to maximize the likelihood of the adaptation data under the transformed model
- One transformation (e.g. 39x39) shared by many gaussians (e.g. 1000s)
- See, e.g., Leggetter & Woodland, “Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models”
- Similar transforms possible for covariance matrix
Old data modeled by some gaussians

New data

New means are a linear transform of the old ones
Tying it All Together: Phone Probabilities

- Want: \(\arg \max_q P(q \mid y) = \arg \max_q P(q) P(y \mid q) \)
- Need to model \(P(y \mid \text{phone q}) \)
- Discrete (VQ) probabilities
- Continuous (GMM) probabilities
- Semi-Continuous probabilities

Is it an /ah/?
Is it an /eh/?
Is it a /p/?
The Discrete Approach

Note:
- Spectral slices should change
- MFCCs would normally be used

- Vector-quantize the feature vectors
 - Every 10ms or so
- \(P(y_t \mid /ah/) = P(27 \mid /ah/) \)
 - Learned by counting examples
 - Covered in HMM lecture
Continuous Probabilities

- Each phone has its own gaussian mixture

$$p(y | \Phi) = \sum_{k=1}^{K} c_k p_k(y | \Phi_k) = \sum_{k=1}^{K} c_k N_k(y | \mu_k, \Sigma_k)$$

/ah/?

/ah/ gaussians

/eh/?

/eh/ gaussians

/p/?

/p/ gaussians

Image from http://oregonstate.edu/~hohenlop/Gaussianmix.jpg
Semi-Continuous Probabilities

- All models share the same gaussians
- Models differ only in the weight assigned to each
- Continuous gaussian models are a special case
 - With lots of zeros as coefficients
- Not much used anymore in ASR
Homework

- Write a VQ program for 2-dimensional data
 - First use Euclidean distortion $D(x,y)$ between points x,y (eq’n. 4.77 of Acero, et al.), squared Euclidean distance
- Use the provided “points” file as input
- Make a plot of the input
- Fit 1,2,4,8 and 16 centroids to the data
 - Plot the centers on top of the data
- Now use log distance
 - $\log(1 + D(x,y))$
- Can you find an analytical update, guaranteed to reduce distortion?
- Find an update that is guaranteed to reduce distortion at each iteration (analytical or not)
- Fit 1, 2, 4, 8 and 16 centroids to the data
 - Plot the centers on top of the data
 - Plot the Euclidean and Log-distance centroids together
- Finally, train a mixture of 1,2,4,8 and 16 gaussians with these points (using either K-means or LBG). Be sure to adjust the variances.
 - Plot the positions of the centers.
- Turn in all 4 plots for 4 centers
- Turn in a printout of your program
- Turn in a printout of the total distortion after each iteration as the program runs
Project Reminder

- Please think about your projects!
- For Speech Recognition / Language ID / Speaker ID, please contact me
 - After class
 - By email gzweig@microsoft.com
- On 5/7 I’d like to meet with everyone doing a relevant project.